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Abstract 

The advent of computer graphic processing units, improvement in mathematical 

models and availability of big data has allowed artificial intelligence (AI) using 

machine learning (ML) and deep learning (DL) techniques to achieve robust 

performance for broad applications in social-media, the internet of things, the 

automotive industry and healthcare. DL systems in particular provide improved 

capability in image, speech and motion recognition as well as in natural language 

processing. In medicine, significant progress of AI and DL systems has been 

demonstrated in image-centric specialties such as radiology, dermatology, pathology 

and ophthalmology. New studies, including pre-registered prospective clinical trials, 

have shown DL systems are accurate and effective in detecting diabetic retinopathy 

(DR), glaucoma, age-related macular degeneration (AMD), retinopathy of 

prematurity, refractive error and in identifying cardiovascular risk factors and 

diseases, from digital fundus photographs. There is also increasing attention on the 

use of AI and DL systems in identifying disease features, progression and treatment 

response for retinal diseases such as neovascular AMD and diabetic macular edema 

using optical coherence tomography (OCT). Additionally, the application of ML to 

visual fields may be useful in detecting glaucoma progression. There are limited 

studies that incorporate clinical data including electronic health records, in AL and 

DL algorithms, and no prospective studies to demonstrate that AI and DL algorithms 

can predict the development of clinical eye disease. This article describes global eye 

disease burden, unmet needs and common conditions of public health importance 

for which AI and DL systems may be applicable. Technical and clinical aspects to 

build a DL system to address those needs, and the potential challenges for clinical 

adoption are discussed. AI, ML and DL will likely play a crucial role in clinical 

ophthalmology practice, with implications for screening, diagnosis and follow up of 

the major causes of vision impairment in the setting of ageing populations globally.  
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1. Introduction 

Artificial intelligence (AI) was conceptualized in 1956, after a workshop at Dartmouth 

College (Figure 1).(McCarthy, Minsky et al. 1955) The term ‘machine learning’ (ML) 

was subsequently coined by Arthur Samuel in 1959 and stated that “the computer 

should have the ability to learn using various statistical techniques, without being 

explicitly programmed”.(Samuel 1959) Using ML, the algorithm can learn and make 

predictions based on the data that has been fed into the training phase, using either 

a supervised or un-supervised approach. ML has been widely adopted in 

applications such as computer vision and predictive analytics using complex 

mathematical models. With the advent of graphic processing units (GPUs), advances 

in mathematical models, the availability of big datasets and low cost sensors, deep 

learning (DL) techniques subsequently, has sparked tremendous interest and been 

applied in many industries.(LeCun, Bengio et al. 2015) DL utilizes multiple 

processing layers to learn representation of data with multiple levels of 

abstraction.(Lee, Tyring et al. 2017) DL approaches use complete images, and 

associate the entire image with a diagnostic output, thereby eliminating the use of 

“hand-engineered” image features. With improved performance,(Abramoff, Lou et al. 

2016, Gulshan, Peng et al. 2016) DL is now widely adopted in image recognition, 

speech recognition and natural language processing.  

 

In medicine, the most robust AI algorithms have been demonstrated in image-centric 

specialties, including radiology, dermatology, pathology and increasingly so in 

ophthalmology.(Schmidt-Erfurth, Sadeghipour et al. 2018, Ting, Pasquale et al. 2018) 

DL algorithms were found to be effective in detecting pulmonary tuberculosis from 

chest radiographs,(Lakhani and Sundaram 2017, Hwang, Park et al. 2018) and to 

differentiate malignant melanoma from benign lesions on digital skin 

photographs.(Esteva, Kuprel et al. 2017) In ophthalmology, there have been two 

major areas in which DL systems have been applied. First, DL systems have been 

shown to accurately detect diabetic retinopathy (DR),(Abramoff, Lou et al. 2016, 

Gulshan, Peng et al. 2016, Gargeya and Leng 2017, Ting, Cheung et al. 2017) 

glaucoma,(Ting, Cheung et al. 2017, Li, He et al. 2018) age-related macular 

degeneration (AMD),(Burlina, Joshi et al. 2017, Ting, Cheung et al. 2017, 

Grassmann, Mengelkamp et al. 2018) retinopathy of prematurity (ROP),(Brown, 
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Campbell et al. 2018) and refractive error, (Varadarajan, Poplin et al. 2018) from 

digital fundus photographs. Cardiovascular risk factors such as blood pressure have 

also been accurately predicted from fundus photographs.(Poplin, Varadarajan et al. 

2018, Ting, Cheung et al. 2019) Second, there are new studies that show several 

retinal conditions [e.g., choroidal neovascular membrane [CNV], earlier stages of 

AMD, and diabetic macular edema (DME)](Lee, Tyring et al. 2017) can also be 

detected accurately with AL algorithms applied on optical coherence tomography 

(OCT) images.(De Fauw, Ledsam et al. 2018, Kermany, Goldbaum et al. 2018)  

 

To date, several AI review articles have been published thus far, summarizing the 

deep learning technologies in Ophthalmology. Nevertheless, none of which have 

focused on the technical and clinical considerations in building deep learning (DL) 

algorithms for fundus photographs and OCTs. This objective of article, therefore, is 

to describe the important technical and considerations of building DL algorithms in 

the research setting, as well as the deployment of these algorithms in the clinical 

settings.  

 

2. Development of DL Algorithms: Technical Consideration  

 

In order to build a robust DL system, it is important to have 2 main components – the 

‘brain’ (technical networks – Convolutional Neural Network [CNN]) and the ‘dictionary’ 

(the datasets). This section will focus on the technical aspects of building a DL 

algorithm, including the understanding of the fundamental of a CNN, software 

framework, network architectures, datasets selection, characteristics, performance 

metrics, reference standard and the visualization techniques to improve the 

explainability of the algorithms (Table 1). 

 

a) Fundamentals of a CNN 

A CNN is a deep neural network consisting of a cascade of processing layers that 

resemble the biological processes of the animal visual cortex. It transforms the input 

volume into an output volume via a differentiable function. Inspired by Hubel and 

Weisel,(Hubel and Wiesel 1968) each neuron in the visual cortex will respond to the 

stimulus that is specific to a region within an image, similar to how the brain neuron 

would respond to the visual stimuli, that will activate a particular region of the visual 
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space, known as the receptive field. These receptive fields are tiled together to cover 

the entire visual field. Two classes of cells are found in this region – simple vs 

complex cells.  

 

Broadly, the CNN can be divided into the input, hidden (also known as feature-

extraction layers) and output layers (Figure 2A). The hidden layers usually consist of 

convolutional, pooling, fully connected and normalization layers, and the number of 

hidden layers will differ for different CNNs. The input layer specifies the width, height 

and the number of channels (usually 3 channels – red, green and blue). The 

convolutional layer is the core building block of a CNN, transforming the input data 

by applying a set of filters (also known as kernels) that acts as the feature detectors. 

The filter will slide over the input image to produce a feature map (as the output). A 

CNN learns the values of these filters weights on its own during the training process, 

although the specific parameters such as number of filters, filter size, network 

architecture still need to be set prior to that. Additional operations called activations 

(for example ReLU or Rectified Linear Unit) are used after every convolution 

operation. For pooling, the aim is to reduce the dimensionality of each feature map 

and make it somewhat spatially invariant, and retain the most important information. 

Pooling can be divided into different types: maximum, average and minimum. In the 

case of maximum pooling, the largest element from the rectified feature map will be 

taken (Figure 2B). The output from the convolutional and pooling layers represent 

the high-level features of the input image. The purpose of the fully connected layer is 

to use these high-level features to classify the input image into various classes 

based on the training dataset. Following which, backpropagation is conducted to 

compute the network weights and uses the gradient descent to update all filters and 

parameter values to minimize the output error. This process will be repeated many 

times during the training process.  

 

b)  Software frameworks  

CNNs are commonly implemented in several popular software frameworks. Early 

development in these past 10 years was enabled by the availability of frameworks 

like Caffe,74 Torch, 13 and Theano75. More recently, Python-based frameworks such 

as TensorFlow76 and PyTorch13 have gained more popularity among the deep 
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learning community. High-level application programming interface (APIs) such as 

Keras12 or Lasagne have also made it much easier to develop DL systems, by 

simplifying the existing networks architectures and pretrained weights. Given that 

this is more convenient for the purposes of transfer learning and fine tuning, they 

could be considered as starting points for implementation for new users.  

 

c) Common network architectures and transfer learning 

AlexNet, first described in 2012 with 5 convolutional layers, has been the most 

widely used CNN, after winning the ImageNet Large Scale Visual Competition 

Recognition.(Krizhevsky, Sutskever et al. 2012) Following which, more CNNs with 

deeper layers and unique features were described subsequently. Each CNN can 

also have different versions and layers, for example VGGNet (16 or 19 layers), 

Inception V1 to V4 (27 layers), ResNet (18, 50, 152 or even up to 1202 layers with 

stochastic depth) and DenseNet (40, 100, 121, 169 layers). Compared to AlexNet, 

the newer networks have unique features to help improve performance, including the 

addition of more layers, smaller convolutional filters, skip connections, repeated 

modules with more complex/parallel filters, bottleneck connection and dropout. 

Although deeper CNNs (e.g. ResNet and DenseNet) have been reported to achieve 

improved performance, older architectures (e.g. VGGNet and Inception) have 

consistently shown comparable outcomes in medical imaging analysis. Apart from 

the classification tasks, U-net, first described by Olaf Ronneberger, has achieved 

particular success in performing segmentation tasks on optical coherence 

tomography (OCT), given its flexibility in input sizes and 

dimensionality.(Ronneberger, Fischer et al. 2015)  

 

In order to further boost performance, multiple deep neural networks are commonly 

trained and ensembled. Transfer learning with pretrained weights has also been 

reported to aid training and performance, especially with smaller datasets. Transfer 

learning is the process of reusing models developed for other applications (e.g. for 

performing full image classification from ImageNet images) and further refining these 

weights for a different target domain (e.g. detection of AMD on fundus images). In 

this approach, called ’fine-tuning’, the original network weights are used as a starting 

point and further optimized (fine-tuned) to solve another task (such as going from an 
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original domain, i.e. common everyday images found in ImageNet, to retinal imaging). 

The approach may also involve selectively freezing some of the network layers’ 

weights (e.g. early layers usually encode low level feature computation that are likely 

to be universally applicable across domains), and selectively fine-tuning other layers 

(e.g. mid-level convolutional or higher-level fully connected layers, which encode 

more domain-specific features).   

 

d) Pre-processing and gradability 

A pre-processing algorithm is crucial in standardizing the input of a retinal image, 

given that different retinal cameras may have different characteristics (e.g. a black 

border surrounding the retinal image, circular vs rectangular image and etc.). The 

standardization of the input images (contrast adjustment and auto-cropping of the 

image borders) may help to optimize the training and testing of a DL algorithm.  

 

It is important for a DL algorithm to assess the image quality of a retinal image using 

the gradability algorithm, given that a suboptimal retinal image may affect the 

diagnostic outcome. This is especially important when a DL algorithm is being 

deployed in the real-world settings, where the patients may be uncooperative, have 

small pupils or cataracts. On the other hand, one needs to be also cautious in setting 

the appropriate threshold of this algorithm, as the ungradable retinal images may 

result in the direct referrals to the tertiary eye care settings. If the criteria for 

gradability is too stringent, this may result in many unnecessary referrals. 

 

e) Training, validation and testing datasets  

The training and development phase usually is split into training, validation and 

testing datasets. These datasets must not intersect; an image that is in one of the 

datasets (e.g., training) must not be used in any of the other datasets (e.g., 

validation). Ideally, this non-intersection should extend to patients. The general class 

distribution for the targeted condition should be maintained in all these datasets. 

 

Training dataset: Training of deep neural nets is generally done in batches (subsets) 

randomly sampled from the training dataset. The training dataset is what is used for 

optimizing the network weights via backpropagation.  
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Validation dataset: Validation is used for parameter selection and tuning, and is 

customarily also used to implement stopping conditions for training.  

 

Testing dataset: Finally, the reported performance of the AI algorithm should be 

computed exclusively using the selected optimized model weights on the testing 

datasets. It is important to test the AI system using independent datasets, captured 

using different devices, population and clinical settings. This will ensure the 

generalizability of the system in the clinical settings.  

 

 

f) Datasets characteristics  

For any AI study, particularly imaging studies, it is important to demonstrate the 

population in which the DL system was developed and tested on. The reporting of 

dataset characteristics, including basic demographics (e.g., age, gender, ethnicity) 

and imaging data platform, size of field of view, reference standard, are important. 

This is especially so because DL systems can predict additional features that are not 

discernable to manual inspection like age and gender.(Poplin, Varadarajan et al. 

2018) These characteristics might be augmented by including the systemic factors 

(e.g. blood pressure, blood sugar level etc.) for vascular conditions such as DR. 

Recruitment methods, exclusion criteria, and a statistical analysis plan must be 

documented before the recruitment of the first subject, a design called preregistration. 

Results must focus on the intent-to-screen population, in which every recruited 

subject is important, so that opportunistic exclusion of subjects and endpoints can be 

avoided.(Wicherts, Veldkamp et al. 2016) Reference standards, also called ‘truth’, 

can be, in order of increasing external validity and decreasing intra- and inter-

observer variability, created by individual clinicians, aggregated clinician opinion (via 

adjudication or voting), or reading centers.(Quellec and Abramoff 2014, Wong and 

Bressler 2016) 

 

g) Reference standard 

In order to report the diagnostic performance of an AI system, gold standard or 

reference standard (also known as ground truth) plays a pivotal role. In 
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ophthalmology, the reference standard/s are usually ophthalmologists, reading 

center graders, non-physician professional trained technicians, or optometrists. In 

terms of examination methods, it could be done as clinic-based examinations, or 

image-based examination. When examining the outcome metrics, it is also important 

to evaluate the design and technical method of a DL agorithm, versus the reference 

standards. For example, a DL algorithm, if developed using 1-field fundus 

photograph, will underperform when it compares against the reference standard that 

uses wide field fundus photography or 7-field 30 degrees retinal photography. Lastly, 

many conditions have different classifications and it is important to standardize these 

gradings prior to the training or testing of the DL algorithms. More details will be 

discussed under the clinical considerations sections. 

 

 

 

h) Performance metrics 

In terms of the performance metrics, the most commonly used is the area under the 

receiver’s operator characteristics curve (AUC), computed using sensitivity (also 

known as recall) and specificity. In order to ascertain the true performance of an AI 

system, it is important to report the AUC of testing datasets (locally and externally), 

using a pre-set operating threshold (i.e., sensitivity or specificity). If the operating 

threshold is not set suitably, an AI system with good AUC (e.g., >0.90) potentially 

could have suboptimal sensitivity or specificity, resulting in adverse events within 

clinical settings and compromising patients’ safety. Apart from AUC, other 

parameters should include positive predictive value (also known as precision), 

negative predictive value or Cohen Kappas. Lastly, many studies utilize accuracy as 

one of the main measurement outcomes. Similar to AUC, the reporting of accuracy 

could be potentially ‘over-optimistic’ given that it takes into account both true positive 

and true negative as the nominator, with true and false positive, and true and false 

negative as the denominator. If a dataset contains only a few positive images and 

the AI system under-detect them, the reported diagnostic accuracy will be high, 

although the sensitivity will be very poor. Thus, for these reasons, the AI study 

should state AUC, sensitivity and specificity as the bare minimum. For assessment 

of segmentation accuracy, the dice coefficient is commonly used by the ML 

community. It measures the overlap between automated and “gold standard” manual 
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segmentation, or the Jaccard index (“intersection over union”).(Anwar, Majid et al. 

2018) In the clinical literature, the agreement between automated and manual 

segmentation is most commonly measured using Bland-Altman plots.(Bunce 2009)  

 

i) Methods to explain the diagnosis  

After creating a robust DL algorithm using the above approaches, it is important for 

the DL algorithms to then explain its rationale for diagnosis, in order to assist the 

physicians to highlight the abnormal areas on the images, and to educate/councel 

the patients about their diagnosis (Figure 3). DL systems are commonly referred to 

as a ‘black-box’,(Carin and Pencina 2018) impacting the adoption of such 

technology within clinical settings. Nevertheless, the recent technical advancement 

in the visualization maps may provide a solution to this. Visualization of the network 

workings and activation can be achieved using several methods, for example 

occlusion testing, integrated gradients and soft attention. It allows the generation of 

overlay highlights that show where the network is looking when it renders a 

classification. Figure 3 and 4 demonstrates some of the visualization techniques 

used by different AI groups to highlight the abnormal areas in the retinal 

images.(Poplin, Varadarajan et al. 2018)  

 

3. Deployment of DL algorithms: clinical considerations  

By 2050, the world’s population aged 60 years and older is estimated to be 2 billion, 

up from 900 million in 2015, with 80% of whom living in low- and middle-income 

countries. People are living longer, and the pace of ageing is much faster than in the 

past.(Divo, Martinez et al. 2014) In a systematic review,(Bourne, Flaxman et al. 2017) 

the number of people with visual impairment and blindness are growing, given the 

ageing population and growth of the population. Of these, DR, glaucoma, AMD are 

found to be the major causes for moderate to severe vision loss.(Flaxman, Bourne et 

al. 2017) Population expansion also creates pressure to screen for important causes 

of childhood blindness such as retinopathy of prematurity (ROP), refractive error, 

and amblyopia.(Wheatley, Dickinson et al. 2002) In order to rectify the manpower 

and expertise shortage, DL algorithms may be utilized as alternative screening tools. 

Nevertheless, it is important to consider the various clinical factors associated with 
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each eye conditions, in order to ensure appropriate deployment and implementation 

of these DL algorithms within the clinical practice.  

 

a) Diabetic retinopathy 

Over the past 24 months, many AI groups have published various studies in DR 

screening (Table 2), with most reporting robust diagnostic performance in either 

detecting referable DR or any DR. It is important to understand the clinical 

implications with respect to the technical design of the individual DL algorithms in DR 

screening. 

i. DR classifications 

For DR model outputs, it can be either a binary or multi-class classification tasks. 

Most of the models have been trained to detect referable DR defined as moderate 

non-proliferative DR (NPDR) or worse and/or DME because it is at this threshold that 

many guidelines suggest closer follow up (rather than follow up in a year). At present, 

there are several DR classifications with variable definitions for DR severity levels. 

These include the International Clinical Diabetic Retinopathy Severity Scales 

(ICDRSS), International Clinical Diabetic Macular Edema Severity Scales 

(ICDMESS), National Health Service (NHS) DR Guidelines, Early Treatment Diabetic 

Retinopathy Study (ETDRS) classification and etc. For example, the moderate 

NPDR in ICDRSS is different from the moderate NPDR in ETDRS and R2 (pre-

proliferative retinopathy) based on the NHS guidelines. Hence, it is important to 

understand the differences between these classifications prior to the training and 

testing of the DL algorithms. 

ii. Reference standard 

Different reference standards were utilized in many published papers in DR 

screening thus far, including retinal specialists, ophthalmologists, graders from the 

reading center (e.g. Wisconsin Reading center). In a pre-registered US FDA clinical 

trial, Abramoff et al reported sensitivity of 87.2% (>85%), specificity of 90.7% 

(>82.5%) in detection of referable DR (worse than mild DR), and gradability rate of 

96.1% were reported,(Abramoff, Lavin et al. 2018) with reference to grading 

performed at the Wisconsin Reading Center. Notably, the grading was performed 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 12

using stricter criteria - 4 fields retinal examination with OCT diagnosis of 

presence/absence of DME, although the DL algorithm was developed using 2-field 

and 2-D fundus photographs.  

 

The reference standard varies between different AI studies and thus, it may be 

challenging to compare one AI system to the other. Moreover, it is important to test 

an AI system on the independent datasets using a pre-fixed operating threshold. For 

example, Ting et al developed a DL algorithm that was tested on 11 independent 

datasets.(Ting, Cheung et al. 2017) Using a pre-fixed operating threshold, the DL 

algorithm achieved a 90.5% sensitivity and 91.6% specificity on a primary testing 

dataset, and AUC of >0.90, sensitivity (>90%) and specificity (>70%) on the 10 

independent datasets, consisting of multi-ethnic population from Singapore, China, 

Hong Kong, USA, Mexico and Australia.  

 

iii. Fundus Imaging  

Given that many DR screening programs worldwide are performing 2-field retinal still 

photography, many DL algorithms were trained to detect analyse the optic disc- and 

macula-centered retinal images.(Ting, Cheung et al. 2017, Abramoff, Lavin et al. 

2018, Li, Keel et al. 2018) In the low resource countries, it may be less labour and 

time consuming to perform 1-field retinal photography. Using the enhanced DL 

algorithms developed by Gulshan et al,(Gulshan, Peng et al. 2016) the Google AI 

has reported clinically acceptable diagnostic performance for Thailand population 

with diabetes.(Raumviboonsuk, Krause et al. 2019) This is an efficient automated 

DR screening method, as most DR changes usually occur in the posterior pole, 

although some may occur occasionally at the nasal retina that may not be able to be 

detected by the 1-field DL algorithm.  

iv. Detection of non-DR findings 

Another consideration in the development of AI models for DR screening is how to 

address non-DR findings. It is common practice that if there are non-DR findings 

identified during DR screening that these findings are reported back to the clinic. 

However, there is still some uncertainty and heterogeneity about when these other 

findings should be considered referable. In addition, there can be substantial grader 
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variability in the manual interpretation of fundus images for other disease. For 

example, when to refer a suspicious cup-to-disc ratio could vary from one screening 

program to another. Ting et al reported the development of additional models that 

also could detect AMD and the glaucoma-like disc.(Ting, Cheung et al. 2017) There 

are other publications (covered later in this review) focused on building models that 

detect non-DR diseases separately. Studies looking at both DR and non-DR findings 

would be an important area for future development. 

 

v. Models of care 

Several models of care can be considered to implement AI for DR screening in the 

clinical practice. It can be either deployed as cloud-based, office-based or retinal 

camera-based settings. For cloud-based setting, this requires a tele-ophthalmology 

platform to enable the AI analysis of the retinal images. This is a suitable model for 

countries (e.g. Singapore, United Kingdom or United States) that have existing tele-

retinal DR screening programs. The AI can be integrated into this information 

technology (IT) platform to help analyse the retinal images. Should the tele-

communication be challenging, the alternative clinical model is to deploy the AI in an 

application programing interface (API) using tablets, laptops or desktops, in an 

office-based setting. This may be a more suitable model for the low resource 

countries where there is suboptimal internet bandwidth. Lastly, it is also possible to 

build the AI algorithm into the retinal camera, providing an instantaneous diagnosis 

after the images are captured. However, this approach may potentially limit the use 

of such DL algorithm for other retinal cameras that are currently available in the 

market.  

vi. Screening workflow 

AI system can be deployed as a stand-alone fully automated system or an assistive 

semi-automated model. This is an important factor to decide on the operating 

threshold of a DL algorithm. For the fully automated system, it is important to take 

both sensitivity and specificity into account when the operating threshold is set. 

While attempting to aim for high sensitivity, one also needs to ensure that the 

specificity is not being highly compromised, resulting in many unnecessary false 

positive referrals to the healthcare settings. On the other hand, for countries with 
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existing DR screening programs with manual graders, the assistive semi-automated 

model may be an excellent alternative approach to reduce the manpower 

requirement. The DL algorithm can be set at a high-sensitivity threshold to filter the 

normal or non-referable retinal images, while the manual graders can perform a 

secondary grading on those retinal images that are deemed referable. This hybrid 

approach not only can aim for an overall excellent sensitivity and specificity, but also 

could potentially reduce the manpower headcount for manual grading. With some of 

the visualization techniques discussed in the previous technical section, this may be 

a good model for the secondary graders to look for the disease lesions from the 

abnormal scans for confirmation.  

vii. Future directions 

Large longitudinal clinical trials with AI systems implemented end-to-end with diverse 

hardware, population characteristics, and local environmental will be critical 

milestones in evaluating the actual safety and efficacy of AI systems. Furthermore, 

real-world deployment of these new systems in multiple settings will be critical in 

understanding the full impact of AI on clinical care. For example, increased number 

of screenings enabled by automated screening algorithms will increase demand for 

follow-up and treatment. Healthcare systems will have to adapt so that they can 

manage this additional volume. Moreover, real time feedback from a model might 

enable follow-up actions to be initiated at the same visit. If a patient does not need to 

be referred, this would also be an opportunity to reinforce and commend the patient 

on efforts in managing their disease and emphasize the need for follow-up. If a 

patient is found to have referable disease, this allows for timely follow-up 

appointments to be scheduled before the patient leaves the office. There is limited 

information available regarding the potential success of such management. Despite 

the tremendous progress made in the application of DL for DR screening, there are 

still many challenges ahead -- from identifying image features that are critical to 

image classification to large scale implementation and medicolegal implication. 

 

 
b) Glaucoma and Glaucoma Suspect 

Apart from DR, many screening programs suggest screening for referable glaucoma 

suspects. In a systematic review, glaucoma was shown to be leading causes of 
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blindness worldwide,(Flaxman, Bourne et al. 2017) accounting for 2.9 million patients 

worldwide. The number with glaucoma is expected to increase up 111.8 million by 

2040.(Tham, Li et al. 2014) For glaucoma, AI plays a pivotal role in screening, 

diagnosis and surveillance of the disease.  

 

A. Challenges in glaucoma and glaucoma suspect definitions 

The success of AI using DL system in glaucoma in the screening or the clinical 

setting is predicated on an agreed-upon structural and functional definition of the 

disease. Certainly, glaucoma is a heterogenous condition, especially considering the 

various anterior segment features that may be present in the disorder, with the 

convergent feature being a characteristic optic nerve appearance that corresponds 

to vision loss.  One way to characterize this optic neuropathy is to rely on excavation 

of the optic nerve head that can be quantified with the cup-to-disc ratio (CDR). Since 

disc size and shape can vary among people in a population and these features also 

differ across populations, it is problematic to describe a CDR that defines glaucoma.   

 

The International Society for Geographical and Epidemiological Ophthalmology 

(ISGEO) proposes using the upper 97.5th percentile of vertical CDR or of CDR 

asymmetry as a standard definition of structural glaucomatous damage.(Foster, 

Buhrmann et al. 2002) This definition is, however, not sufficient for glaucoma 

diagnosis, because of the large influence of disc size(Crowston, Hopley et al. 2004) 

and the issues in patients with abnormal anatomical configuration of the disc. In 

addition, measurement of CDR is biased by large grader-variability because of a lack 

of a solid anatomic basis.(Chauhan and Burgoyne 2013)  

 

On OCT retinal nerve fibre layer thickness and ganglion cell complex measurements 

are used to discriminate glaucoma from healthy.(Savini, Carbonelli et al. 2011) More 

recently minimum rim width as measured from Bruch’s membrane opening has been 

used as a novel diagnostic tool in glaucoma.(Chauhan, Danthurebandara et al. 2015) 

A proposed reference standard for functional loss from glaucoma is a glaucoma 

hemifield test (GHT) outside normal limits and a cluster of 3 contiguous points with 

assigned probability of 5% or less on the pattern deviation of a Humphrey visual field 

analyzer. These contiguous points should follow a nerve fiber layer distribution. 

Comparable functional loss on other visual field (VF) platforms could be considered. 
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Patients with definite glaucoma would meet both structural and functional criteria 

while suspects might meet only the structural criterion. The ISGEO proposes that 

patients with disc haemorrhage, IOP at greater than the 97.5Th percentile or subjects 

with occludable angles but normal optic nerves, visual fields, IOP and no peripheral 

anterior synechiae also be regarded as suspects. While no definition of glaucoma is 

ideal, DL systems can potentially be trained to identify these phenotypic attributes.   

 

B. Optic Disc Imaging 
 

Optic disc fundus imaging is the least expensive imaging modality to conduct 

structural assessment of the optic nerve, although the sensitivity and specificity in 

detecting glaucoma suspect or glaucoma are not comparable to the combined 

structural and functional assessment using more sophisticated imaging devices such 

as optical coherence tomography or Humphrey visual fields.  

 

Given that the optic disc fundus imaging is commonly taken and analyzed as part of 

the DR screening exercises, it is important to have a good DL algorithm in detecting 

glaucoma +/- glaucoma suspect from the colour retinal images (Figure 4). To date, 

most DL algorithms for disc suspect are developed using large number of retinal 

images collected from DR screening programs (e.g. Ting et al and Li et al).(Ting, 

Cheung et al. 2017, Li, He et al. 2018) In these 2 studies, the DL algorithms for 

detection of glaucoma suspect were developed from the optic disc images (defined 

as CDR 0.8 or worse and/or glaucomatous changes), with excellent diagnostic 

outcome of >90% accuracy (Table 3). These retinal images, however, were graded 

and assessed in a 2-dimensional manner without a thorough clinical evaluation with 

measurement of intraocular pressure, structural or functional confirmation of the 

diagnosis.  

 

Using 3242 fundus images, Shibota et al developed a DL algorithm that is trained 

and tested with the eyes with confirmed glaucoma, reporting an excellent AUC of 

0.965.(Shibata, Tanito et al. 2018) The CNN was trained to detect focal disc notching, 

cup excavation, retinal nerve fibre layer atrophy, disc haemorrhage and peripapillary 

atrophy, all signs which may occur at CDRs below pre-selected criteria. Using 1758 

Spectral Domain OCT images, Asaoka was also able to detect early glaucoma with 
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an AUC of 0.937 (Sensitivity = 82.5% and Specificity = 93.9%).(Asaoka, Murata et al. 

2018) Interestingly ultra-wide scanning laser ophthalmoscopy is gaining popularity in 

the detection of DR and fine optic disc details are captured in these images.  

Masumoto et al. used 1379 Optomap images to detect glaucoma overall with 81.3% 

sensitivity and 80.2% specificity; values were higher for more severe glaucoma 

(Table 3).(Masumoto, Tabuchi et al. 2018) 

 

C. Visual Field 

Relative to optic disc photographs or OCT images, the data contained in VF tests 

have low dimensionality and high noise. Nonetheless VFs represent an important 

endpoint in glaucoma clinical trials and VF findings will likely influence glaucoma 

diagnosis and guide clinical care for the foreseeable future. While the GHT on the 

Humphrey VF represents a supervised algorithm that is useful in defining glaucoma, 

DL systems would be useful to define and quantify patterns of VF loss so that 

minimal thresholds for defining glaucoma could be established. Elze et al. developed 

an unsupervised algorithm termed archetype analysis to identify VF loss patterns 

that include glaucomatous and non-glaucomatous deficits and provide weighting 

coefficients for these patterns.(Elze, Pasquale et al. 2015) This algorithm has been 

validated(Cai, Elze et al. 2017) and has proven useful in augmenting the GHT for the 

detection of early functional glaucomatous loss.(Wang, Pasquale et al. 2018) Using 

an entirely different strategy, Li et al trained a CNN to learn the Pattern Deviation 

probability plots of normal and glaucomatous eyes and was able to detect glaucoma 

with 93.2% sensitivity and 82.6 sensitivity.(Li, Wang et al. 2018) Yousefi et al. used 

an alternative Gaussian mixture and expectation maximization method to 

decompose VFs along different axes to detect VF progression.(Yousefi, Goldbaum 

et al. 2014) This approach was as good or superior to current algorithms, including 

Glaucoma Progression Analysis, Visual field Index and Mean Deviation slope, in 

detecting VF progression.  

 

D. Clinical Forecasting 

Kalman filtering (KF) is a ML technique that filters out noise in serial measures of a 

parameter to forecast trends over time.  Glaucoma is generally a chronic slowly 

progressive disease whose trajectory is influenced by serial IOP, as well as changes 

in functional and structural data.  Researchers at University of Michigan used 
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longitudinal data on IOP and VFs to accurately forecast VF progression for 

participants in the Collaborative Initial Glaucoma Treatment Study.(Schell, Lavieri et 

al. 2013) Using a similar approach on a clinical based sample of Japanese normal 

tension glaucoma patients, KF was better able to predict 2-year MD forecast than 

linear regression of MD.(Garcia, Nitta et al. 2018) 

 

E. Potential challenges  

For glaucoma, the issue is most complicated when DL approaches shall be applied 

to the classification. This is related to the difficulties in defining and diagnosing early 

stages of the disease. A clear diagnosis of early cases is often difficult and patients 

that show signs of structural disease without visual field defects are called glaucoma 

suspects(Chang and Singh 2016). Confirmation of the diagnosis is only possible 

longitudinally when the patient is either developing corresponding functional loss as 

identified with visual field testing or progression of structural loss that exceeds the 

age-related loss of tissue over time. Under these circumstances, it is of course 

difficult to train a glaucoma network for early cases of glaucoma detection. On the 

other hand, this is also a chance for AI to be implemented into glaucoma care, but 

strong longitudinal data are required to train the network for correctly identifying 

those who will develop glaucoma. Obviously, predictions of incidence are more 

difficult than simple classification or staging. In glaucoma there is an urgent clinical 

need for such networks because treatment is possible(Schmidl, Schmetterer et al. 

2015) and advanced visual field defect is an important risk factor for transitioning to 

functional blind(Peters, Bengtsson et al. 2014).  Although progression of glaucoma 

cannot be halted with current therapeutic interventions slowing down progression is 

of utmost importance because it can shift the time to blindness beyond the life 

expectancy of a patient.  

 

In patients with more advanced stages of glaucoma the classification may be an 

easier task, although the wide inter-individual variability of optic nerve anatomy, 

particularly in myopic eyes, needs to be considered(Fledelius and Goldschmidt 2010, 

Kwon, Sung et al. 2017). As such the training data set needs to consist of a large 

dataset including a wide variety of different anatomical configurations of the optic 

nerve head. DL may also have applications in glaucoma progression analysis that 

likely needs to include structure and function. If clinical decision-making is based on 
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artificial network progression analysis the general acceptance will also depend on 

the availability of outcome data.  

 

F.  Future directions 

Currently, much work is needed to improve AI glaucoma detection algorithms.  In the 

area of imaging, OCT technology demonstrates that the disc edge is best defined 

based on Bruch’s membrane opening (BMO) and clinicians are not well trained to 

find this landmark on fundus photos.(Hong, Koenigsman et al. 2018) Thus validation 

of DL systems to detect the glaucoma-like disc may require that training sets contain 

paired OCT images so that proper ground truth regarding disc margin contour be 

established.  This will help establish the most accurate standardized assessment of 

CDR. DL systems should account for disc color and textural information embedded 

in pixel-rich fundus images so that they can detect non-glaucomatous optic nerve 

disease and leverage the fact that nerve fibre layer atrophy accompanies optic nerve 

degeneration. Rather than detect the disc with arbitrary CDR cutoffs, more work is 

needed to calibrate DL systems to detect the disc with manifest VF loss is also 

needed.  Finally, more work on incorporating OCT data into DL algorithms to detect 

pathologic optic nerves as well as progressive structural damage is 

needed.(Muhammad, Fuchs et al. 2017) Algorithms that not only ascertain if there is 

optic nerve pathology but the regional location of pathology would be widely 

accepted. 

 

c) Age-related Macular Degeneration (AMD) 

AMD is another major cause of vision impairment, accounting for 8.7% of all 

blindness worldwide.(Bressler 2004, Wong, Loon et al. 2006, Baeza, Orozco-Beltran 

et al. 2009, Wong, Su et al. 2014) It is projected that 288 million may have some 

forms of AMD by 2040, with approximately 10% having intermediate AMD or 

worse.(Wong, Su et al. 2014) The treatment for neovascular AMD patients has been 

revolutionized with the advent of anti-vascular endothelial growth factors 

(VEGF),(Group, Martin et al. 2011, Chakravarthy, Harding et al. 2013) with many 

countries, e.g. US, Australia, reporting a significant drop in incident blindness 

by >50%. (Bressler, Doan et al. 2011, Mitchell, Bressler et al. 2014) The American 

Academy of Ophthalmology recommends an examination for those with the 

intermediate stage of AMD at least every 2 years, as most of these patients are 
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usually visually asymptomatic, but have a higher risk of developing advanced AMD 

than individuals without the intermediate stage. These patients will require a referral 

to the tertiary eye care setting for further clinical evaluation and investigations (e.g. 

OCT and fundus fluorescein angiogram). With ageing population, DL algorithms 

could be utilized as alternative tools to aid screening, diagnosis, prognostication and 

disease surveillance. 

A. Different AMD classifications 

For AMD, multiple classification systems have been proposed apart from AREDS, 

including the recent Clinical Classification as worked out by the Beckman Initiative 

for Macular Research Classification Committee(Ferris, Wilkinson et al. 2013) and the 

Three Continent AMD Consortium Severity Scale(Klein, Meuer et al. 2014) 

developed by harmonizing the grading of three large-scale population-based studies. 

Significant differences among these grading systems have been reported in 

distinguishing early from intermediate AMD when classifying according to the defined 

criteria(Brandl, Zimmermann et al. 2018). DL-based classification systems have 

been developed for referability(Burlina, Joshi et al. 2018), severity characterization 

and estimation of 5-year risk(Burlina, Joshi et al. 2018)  and disease 

conversion(Schmidt-Erfurth, Waldstein et al. 2018).  

 

B. Fundus-based DL algorithms 

Many of the AI systems for AMD were built using the age-related eye disease study 

(AREDS) dataset,(Burlina, Joshi et al. 2018, Grassmann, Mengelkamp et al. 2018) 

while some utilized other datasets.(Ting, Cheung et al. 2017) Similar to DR and 

glaucoma, most DL algorithms reported robust diagnostic performance in detecting 

referable AMD (defined as intermediate AMD or worse) (Table 4). Furthermore, 

using the AREDS dataset, Burlina et al estimated 5-year risk of AMD progression, 

with weighted k scores of 0.77 for 4-step severity scales and overall mean estimation 

error between 3.5% and 5.3%.(Burlina, Joshi et al. 2018) Similarly, Grassmann et al 

built a DL system for detection of early and late AMD,(Grassmann, Mengelkamp et al. 

2018) developed using AREDS dataset and tested using using the Augsburg dataset, 

consisting of 5,555 fundus images that were collected as part of the collaborative 

health research in the region of Augsburg, Germany. Given that the AREDS dataset 

mostly consist of patients aged >55 years old, this DL algorithm mis-treated many 
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dominant macula reflexes as neovascular AMD. Again, this highlights the importance 

of training DL algorithms with diverse clinical datasets, consisting of a wide range of 

disease phenotypes and patients’ characteristics.  

 

C. OCT-based DL algorithms 

Increasingly, OCT plays a major role in disease detection, prognostication and 

surveillance in all AMD patients, especially those wet AMD requiring anti-vascular 

endothelial growth factor (anti-VEGF). OCT has established itself as the dominant 

imaging modality, particularly for the diagnosis and management of AMD.(Keane 

and Sadda 2014) Thirty million ophthalmic OCT procedures are now performed 

every year, a figure comparable in scale to other medical imaging such as magnetic 

resonance imaging (MRI) or computed tomography (CT), and which is more than the 

sum of all other ophthalmic imaging modalities combined.(Fujimoto and Swanson 

2016) By allowing personalized therapy for just one retinal disease – neovascular 

AMD – it is estimated that OCT imaging has saved the United States government at 

least $9 billion.(Windsor, Sun et al. 2018) 

 

The OCT DL algorithms can be broadly divided into segmentation and classification 

tasks. With appropriate segmentation, the DL algorithm can also delineate the 

abnormal areas on the OCT scans, providing the surface areas or volume of the 

abnormal regions. Much of the initial work in the application of DL to OCT image sets 

has related to lesion detection (the process of starting with an unlabelled OCT B-

scan or volume and marking potential abnormalities) and segmentation (the 

delineation of margins of any structure, abnormal or otherwise).  

 

D. OCT segmentation of retinal changes 

Lee et al. described the use of DL for segmentation of intraretinal fluid in OCT 

images (Table 5).(Lee, Tyring et al. 2017) Using Spectralis OCT images that have 

intraretinal fluid, including DME, RVO, and AMD, they selected 934 manually 

segmented central subfoveal scans for manual segmentation and a modified U-net 

for training and testing. Intraretinal fluid was defined as “an intraretinal hyporeflective 

space surrounded by reflective septate”. The DL algorithm showed good 

performance for human interrater reliability and the DL system, with dice coefficients 

of 0.750 and 0.729, respectively.  
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Few  groups have extended their models to perform segmentation of pigment 

epithelium detachment (PED), the formation of a potential space between the RPE 

and Bruch’s membrane.(Zayit-Soudry, Moroz et al. 2007, Xu, Yan et al. 2017) 

Schmidt-Erfurth et al. have reported the correlation of PED metrics with visual acuity 

in patients with neovascular AMD using a DL-based system.(Schmidt-Erfurth, 

Bogunovic et al. 2018) Detailed description and validation of this PED segmentation 

approach has not yet been published but it appears to treat PED as a single entity 

rather than a range of specific subtypes. This single PED entity was not found to 

significantly affect visual acuity in these cases.  

 

E. OCT algorithm to detect neovascular AMD 

Using close to 100,000 OCT B-scans (50% normal and 50% AMD scans), Lee et al 

reported an accuracy of 87.6% with 84.6% sensitivity and 91.5% specificity.(Lee, 

Baughman et al. 2017) This DL algorithm was developed using the OCT scans 

identified via the clinical data from the electronic health record (EHR). An AMD 

patient was defined as having an ICD-9 diagnosis of AMD by a retina specialist, at 

least one intravitreal injection in either eye, and worse than 20/30 vision in the better 

seeing eye. Of note, patients with other macular pathology by ICD-9 code were 

excluded. The central 11 OCT B-scans from each macular OCT set were selected, 

labelled en bloc as either normal or as AMD, and then used independently for 

development of the classification model. They also adopted occlusion testing to 

highlight the abnormal OCT areas by using a blank 20x20 pixel area. 

 

F. OCT algorithm to triage referral urgency 

Using 14,884 OCT scans, De Fauw et al. showed that the DL algorithm was able to 

detect those who require urgent referrals with excellent performance (AUC of >0.90), 

using 2 different OCT systems (Topcon and Spectralis).(De Fauw, Ledsam et al. 

2018) This DL algorithm utilized nine contiguous OCT scans, a three-dimensional U-

net architecture and intermediate tissue representation to output automated 

segmentations across 15 different label classes. These labels encompass a range of 

novel OCT biomarkers, including three forms of PED (fibrovascular, serous, and 

drusenoid) and subretinal hyperreflective material. This model segments the 

posterior hyaloid and epiretinal membrane (ERM), to allow enhanced assessment of 
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vitreomacular interface disorders, and the RPE, allowing for the quantification of 

retinal degeneration and atrophic changes (Figure 5 and 6). The authors also 

highlighted the need to perform domain adaptation to fine tune the DL algorithm that 

was developed using a completely different device. Prior to re-training for the new 

device, the total error rate for referral suggestions were as high as 46.6%. 

Nevertheless, by adding an additional 152 scans (527 manually segmented slices in 

total) from the new device, the error rate was brought down to 3.4% (4 out of 116).  

 

G. OCT algorithm to predict treatment outcome 

Schmidt-Erfurth et al., used the HARBOR data to develop ML models to predict 

visual acuity in patients receiving ranibizumab for neovascular AMD.(Schmidt-Erfurth, 

Bogunovic et al. 2018) They began by selecting 70% of the HARBOR dataset for 

analysis. They next applied automated segmentation algorithms (using both graph-

based and DL approaches) to the OCT scans, allowing segmentation of total retinal 

thickness, IRF, SRF, and PED. This allowed them to generate four morphologic 

maps and thus a wide range of quantitative structural variables. They used classical 

ML techniques (random forest regression) to predict visual acuity at baseline and at 

12 months. For the latter, they constructed separate models for the visits at baseline 

and then for months one to three. Of note, the ranibizumab dose and treatment 

regimens were included in the model as fixed effects. Their study involved 614 eyes. 

At baseline, the extracted OCT biomarkers – in particular, the extent of IRF – were 

found to predict the visual acuity with an R2 of 21% (i.e., these variables accounted 

only for 21% of the variation in baseline visual acuity). As with previous studies, they 

found that SRF and PED did not contribute to baseline visual acuity to any 

meaningful extent. They also predicted visual acuity at 12 months following initiation 

of therapy. At baseline, their model accounted for 36% of the variation of visual 

acuity. As expected, the performance of the model improved with each additional 

month added, so that, by month three, it accounted for 70% of the variation. In other 

words, patients with good visual acuity at baseline, and then at each follow-up for 

three months, were likely to have good visual acuity at 12 months.  

 

H. Future Directions 

Future research is important to evaluate the generalizability and cost-effectiveness of 

these DL systems in a larger international multi-ethnic cohort. Apart from screening 
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purposes, it will be of great value to generate new algorithms to predict and 

prognosticate the functional, structural and treatment outcome for AMD patients, with 

appropriate stratification of the risk profiles. Ideally, the development of the algorithm 

should incorporate multi-modal approach – clinical data (functional, structural, 

treatment outcome), fundus photographs and OCT imaging. who are likely to 

progress in the long run, coupled with clinical data and treatment outcome. 

 

To allow true real-world clinical applicability on retinal OCT imaging, in our opinion, 

DL systems should fulfil a number of criteria. They should be designed with a 

specific clinical pathway in mind, be trained on large and heterogeneous image sets 

that are representative of this use case. They should also be capable of providing 

multi-class classifications to allow for co-existence of multiple retinal pathologies. 

Most importantly, they should be able to achieve performance on par with retinal 

specialists as well as being able to provide some measure of classification certainty 

for challenging and ambiguous cases.  

 

End-to-end approaches using DL are likely to provide additional insights, particularly 

if large, well-labelled datasets can be used for training. However, a potential 

challenge in this regard will likely be the significant compute resources that will be 

required to train such models using a high-resolution three-dimensional dataset 

containing OCTs. It will also be important to make sure that the resulting model is 

clinically meaningful. For example, it may be possible to predict visual outcomes to 

high accuracy after 12 months of treatment, but this will be less useful for the patient 

if it involves incorporation of multiple time series data immediately prior to this. It will 

also be important to determine what balance of sensitivity and specificity is likely to 

be clinically meaningful and thus potentially actionable (for example, in potential 

prophylactic treatment of retinal disease prior to onset or progression). Finally, 

perhaps even more so than with image classification tasks, it will be important to 

prove that any models produced can be generalized for wide-spread usage, either in 

clinical trials or in real-world clinical practice. 

 

d) Retinopathy of Prematurity  
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ROP is a retinal vascular disease affecting premature infants, characterized by 

abnormal fibrovascular proliferation at the boundary of the vascularized and 

avascular peripheral developing retina (Figure 7). Globally, it is estimated that 15 

million babies are born prematurely each year.(Quinn 2016) In US, the incidence of 

ROP was 19.9%.(Ludwig, Chen et al. 2017) ROP accounts for 6 to 18% of childhood 

blindness,(Fleck and Dangata 1994) causing significant psycho-social impact on the 

child and the family.(Blencowe, Vos et al. 2013) According to the Early Treatment for 

ROP (ETROP) trial,(Early Treatment for Retinopathy of Prematurity Cooperative, 

Good et al. 2010) early treatment has shown to be beneficial to improve the visual 

acuity of high-risk ROP patients, although 9% still eventually became blind. Thus, 

early screening with regular monitoring is crucial.  

 

A. Current challenges with ROP diagnosis 

From a public health perspective, the number of premature infants at risk for ROP is 

increasing due to a rising number of preterm births and increased neonatal survival, 

particularly in the developing world.(Gilbert, Rahi et al. 1997) Meanwhile, the supply 

of clinicians who perform ROP management is limited by logistical challenges of 

coordinating examination at the neonational intensive care unit bedside, low 

physician reimbursements, and extensive medicolegal liability. From an educational 

perspective, training in ROP diagnosis is often inadequate, further limiting the 

workforce of ophthalmologists trained to manage this disease.(Chan, Williams et al. 

2010, Myung, Chan et al. 2011, Nagiel, Espiritu et al. 2012, Wong, Ventura et al. 

2012) 

 

In particular regarding clinical care, there are a number of real-world challenges 

regarding plus disease diagnosis:  

i. There is often significant variability in diagnostic classification (plus vs. pre-

plus vs. normal), even among experts,(Chiang, Jiang et al. 2007, Wallace, 

Quinn et al. 2008, Slidsborg, Forman et al. 2012, Gschließer, Stifter et al. 

2015, Campbell, Ryan et al. 2016) leading to inconsistent application of 

evidence-based practice.(Fleck, Williams et al. 2018) This has occurred even 

in NIH-funded multicenter trials. For example, in the CRYO-ROP protocol, 

confirmation of threshold disease was required by a second unmasked 

certified examiner performing dilated ophthalmoscopy. In that setting, the 
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second examiner disagreed with the first examiner regarding clinical diagnosis 

of threshold disease in 12% of cases.(Reynolds, Dobson et al. 2002) Also, in 

a multi-center study of telemedicine for ROP diagnosis, nearly 25% of 

examinations by certified study graders required adjudication because the 

graders disagreed on one of three criteria for clinically-significant ROP.(Daniel, 

Quinn et al. 2015)  

ii. There is significant variability in diagnostic process among experts, who have 

been shown in observational studies to consider different retinal vascular 

features during assessment of disease severity.(Hewing, Kaufman et al. 2013)  

iii. There is evidence that experts frequently deviate from the published definition 

of plus disease when assessing ROP, for example by considering factors 

such as venous tortuosity and peripheral retinal vascular features.(Rao, 

Jonsson et al. 2012, Hewing, Kaufman et al. 2013, Keck, Kalpathy-Cramer et 

al. 2013, Campbell, Ataer-Cansizoglu et al. 2016)  

iv. The published standard photograph for plus disease was from the 1980s, and 

has a much smaller field of view and larger magnification than clinicians are 

accustomed to seeing during standard examination methods using indirect 

ophthalmoscopy or wide-angle retinal images. There is evidence that this 

causes bias and inconsistency in diagnosis.(Gelman, Gelman et al. 2010)  

v. Studies have shown that there is a geographical variation in plus disease 

diagnosis possibly related to differences in training,(Fleck, Williams et al. 2018) 

and that there may be chronological drift showing a tendency to diagnose 

“plus disease” more frequently than in the past.(Moleta, Campbell et al. 2017)  

vi. The multicenter Supplemental Therapeutic Oxygen for Prethreshold ROP 

(STOP-ROP) study defined that plus disease is present if there is sufficient 

venous dilation and arterial tortuosity in at least 2 quadrants, and this 

definition was incorporated into the 2005 revised ICROP.(Group 2000, Gole, 

Ells et al. 2005) However, there is variability in how this definition is 

interpreted,(Wallace, Quinn et al. 2008, Slidsborg, Forman et al. 2012, 

Hewing, Kaufman et al. 2013, Gschließer, Stifter et al. 2015) and evidence 

that this variability may lead to clinically-significant differences in 

diagnosis.(Slidsborg, Forman et al. 2012, Kim, Campbell et al. 2018)  

vii. The ICROP definition of pre-plus disease(Gole, Ells et al. 2005) is somewhat 

vague. Studies have found significant levels of variability in diagnosis of pre-
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plus disease among experts.(Chiang, Jiang et al. 2007, Wallace, Quinn et al. 

2008)  

viii. Vascular abnormality in ROP reflects a continuous spectrum of 

disease,(Wallace, Kylstra et al. 2000, Gole, Ells et al. 2005, Wallace, 

Freedman et al. 2011) whereas clinical management is based on a discrete 

classification (e.g. “plus disease” vs. “not plus”) from findings of clinical trials, 

which requires determining cut-points for abnormality.(Tasman 1988, 

Reynolds, Dobson et al. 2002)  Research suggests that diagnostic 

discrepancy results from individual clinicians having different cut-points (e.g. 

“is this plus or pre-plus disease”), despite having better agreement on relative 

disease severity (e.g. “which retina looks worse”).(Campbell, Kalpathy-Cramer 

et al. 2016, Kalpathy-Cramer, Campbell et al. 2016) 

 

B. DL algorithms on Retcam Imaging  

Early approaches to computer-based image analysis for plus disease diagnosis were 

based on quantification of vascular tortuosity and dilation (RetCam; Natus Medical 

Incorporated, Pleasanton, CA).(Wittenberg, Jonsson et al. 2012) Three such 

systems have been developed and validated for wide-angle RetCam images: 

ROPTool, Retinal Image multiScale Analysis (RISA), and Computer-Assisted Image 

Analysis of the Retina (CAIAR).(Koreen, Gelman et al. 2007, Wilson, Wong et al. 

2012, Abbey, Besirli et al. 2016) These systems have been evaluated against expert 

diagnostic performance, but have not had real-world application because of 

limitations such as being semi-automated (e.g. requiring manual identification of 

optic disc or key vascular segments), or having limited correlation with two-level 

expert diagnosis (plus disease vs. not plus). 

 

More recently, one system (Imaging & Informatics in ROP, i-ROP) was developed 

based on ML methods, in which a vascular metric termed “acceleration” was found to 

have best diagnostic performance in a 6 disc-diameter circular crop of wide-angle 

RetCam images considering all retinal vessels combined.(Ataer-Cansizoglu, Bolon-

Canedo et al. 2015) This system had 95% accuracy for 3-level plus disease 

diagnosis (vs. pre-plus or normal) in a test set of 77 images, compared to a 

reference standard defined by combining ophthalmoscopic examination by 1 expert 

with image-based examination by 3 experts. For the same test set of 77 images, 3 
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individual experts had accuracy of 92-96%, and 31 non-experts had mean accuracy 

of 81%. However, real-world application of this system has been limited by the 

requirement for manual segmentation of images.(Ataer-Cansizoglu, Bolon-Canedo et 

al. 2015) 

 

DL has been applied for automated diagnosis of ROP, which could potentially 

address barriers to ROP screening on a larger scale.(Worrall, Wilson et al. 2016) 

Most recently, Brown et al developed and validated a fully-automated DL system (i-

ROP DL) for 3-level plus disease diagnosis (plus vs. pre-plus vs. normal) with an 

area under the ROC curve of 0.98 for plus disease diagnosis compared to a 

reference standard defined by combining ophthalmoscopic examination by 1 expert 

with image-based examination by 3 experts. When evaluated in an independent test 

set of 100 wide-angle RetCam images, the i-ROP DL system achieved 93% 

sensitivity and 94% specificity for diagnosis of plus disease, and 100% sensitivity 

and 94% specificity for diagnosis of pre-plus or worse disease. When compared to 8 

international ROP experts evaluating the same 100-image test set, the i-ROP DL 

system agreed with the consensus diagnosis more frequently than 6 of the 8 

experts.(Brown, Campbell et al. 2018) 

 

C. Future Directions 

AI has potential to create assistive technologies to improve the accuracy and 

consistency of ROP diagnosis by clinicians. In the future, this could produce 

quantitative ROP severity scores to facilitate objective monitoring of disease 

progression and treatment response. Future automated systems might provide initial 

readings of images captured by neonatal intensive care unit nurses, thereby 

reducing the requirement for traditional ophthalmoscopic examinations in the 

majority of infants without clinically-relevant disease. These methods may be 

particularly applicable to the developing world, where the availability of 

ophthalmology and neonatology expertise may be insufficient to manage the number 

of premature infants at risk for ROP. 

 
 
e) Miscellanous conditions  

 
A. Cardiovascular disease  
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Cardiovascular diseases (CVDs) is the largest cause of non-communicable deaths 

worldwide. For 2018, WHO estimated that 17.9 million people died of CVD worldwide 

in 2012, accounting for an estimated 31% of global mortality.(Roth, Johnson et al. 

2017) Given the ageing population, the clinical unmet need will continue to rise over 

the next few decades. Most screening programs will face shortage of manpower and 

infrastructure, especially in the low-to-middle income countries. Thus, there is an 

urgent call for action in exploring novel and economical screening technologies for 

these conditions. CVD risk assessment is a critical first step in managing and 

preventing heart attacks, strokes, and other adverse cardiovascular events. 

Clinicians often utilize risk calculators, such as the Pooled Cohort equations,(Stone, 

Robinson et al. 2014)  Framingham(Wilson, D'Agostino et al. 1998, National 

Cholesterol Education Program Expert Panel on Detection and Treatment of High 

Blood Cholesterol in 2002, D'Agostino, Vasan et al. 2008) and SCORE,(Conroy, 

Pyorala et al. 2003, Graham, Atar et al. 2007) which is based on various factors from 

patient history (e.g. age, self-reported sex, smoking status) and blood samples (e.g. 

lipid panels).(Goff, Lloyd-Jones et al. 2014) Given that obtaining these values require 

a blood draw and fasting prior to the procedure, some of these parameters such as 

cholesterol values may be sparsely available(Hira, Kennedy et al. 2015). 

 

B. Retina is the window to the cardiovascular health  

There have been many efforts to improve risk prediction, particularly in incorporating 

phenotypic information to further refine risk prediction such as the addition of 

coronary artery calcium(Yeboah, McClelland et al. 2012) or retinal imaging. The 

retina is unique in that it is one of the only places in the body where vascular tissue 

can be visualized quickly and noninvasively. Conditions associated with CVD, such 

as hypertensive retinopathy and cholesterol emboli, can often manifest in the eye. 

Previous studies have shown that various retinal features may be predictive of 

cardiovascular events, stroke(Cheung, Tay et al. 2013) or chronic kidney 

disease.(Yip, Ong et al. 2017) These features include vessel caliber,(Wang, Liew et 

al. 2006, Wong, Kamineni et al. 2006, Seidelmann, Claggett et al. 2016) bifurcation 

or tortuosity,(Witt, Wong et al. 2006) Currently, the assessment of such features 

requires expert assessors going through a fairly long and detailed procedure. For 

example, to measure vessel diameters, expert assessors must segment vessels, 

identify specific segments and adjudicate variations, a fairly time-consuming process 
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to measure just one feature of the image. While the previous work in this field is 

promising, the clinical utility of such features still requires further study.  

 

C. AI to predict systemic cardiovascular risk factors 

In a recent study, Poplin and Varadarjan et al(Poplin, Varadarajan et al. 2018) used 

DL to build a model that predicted cardiovascular risk factors using retinal fundus 

images from 48,101 patients from the UK Biobank study(2017) and 236,234 from the 

EyePACS population.(2017) The UK Biobank population was predominantly 

Caucasian without diabetes while the EyePACS patients were predominantly 

Hispanic with diabetes. These models were then validated using images from 12,026 

patients from UK Biobank, 999 patients from EyePACS, and on an independent 

cohort of Asian patients.(Ting and Wong 2018) The model was fairly accurate for 

some predictions such as age, self-reported sex, blood pressure, and smoking status. 

In addition, the authors also trained a model to predict the onset of major adverse 

cardiovascular events (MACE) within 5 years using the UK Biobank study. For this, 

MACE was defined as the presence of billing codes for unstable angina, myocardial 

infarction, or stroke or death from cardiovascular causes. Participants that had a 

MACE prior to the retinal imaging were excluded. Because the UK Biobank recruited 

relatively healthy participants, MACE were rare (631 events occurred within 5 years 

of retinal imaging--105 of which were in the clinical validation set). Despite the limited 

number of events the model achieved an AUC of 0.70 (95% CI: 0.65, 0.74) from 

retinal fundus images alone, comparable to the AUC of 0.72 (0.67, 0.76) for the 

European SCORE risk calculator. Because cholesterol levels were not available at 

the time of the study, body mass index (BMI) was used as a proxy while calculating 

the SCORE risk.(Cooney, Dudina et al. 2009, Dudina, Cooney et al. 2011, 2017)  

 

An explanation technique for DL models called soft-attention was used to identify 

relevant anatomical regions that the model may be using to make its predictions. 

This generated a heat map showing the most predictive pixels in the image. A 

representative example of a single retinal fundus image with accompanying attention 

maps(Simonyan K 2017) for a few predictions is shown in Figure 8.  

 

Despite these promising results, efforts to improve the performance and 

interpretability of these DL models seems indicated, especially for MACE. In this 
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study, Poplin et al study did not include blood tests such as lipid panels in the 

analysis because it was not available.(Poplin, Varadarajan et al. 2018) A 

substantially larger dataset or a population with more cardiovascular events may 

enable more accurate DL models to be trained and evaluated with high confidence. 

Training with larger datasets and more clinical validation will help determine whether 

retinal fundus images may be able to augment or replace some of the other markers, 

such as lipid panels, to yield more accurate predictions. Lastly, It is also important to 

explore how this DL algorithm can be incorporated into the current cardiovascular 

risk calculators to improve the predictive power for 5-year MACE risks. 

 

D. AI for refractive error  
In the previous examples with CVD and retinal imaging, DL has also shown great 

promise in discovering new associations from imaging or quantifying known 

associations to a high level of accuracy. Another example of this is the recent work 

done in applying DL for refractive error. While physicians would generally have 

difficulty predicting refractive error from a retinal fundus image, DL techniques are 

able to predict this fairly accurately. Varadarajan et al(Varadarajan AV 2017) showed 

that DL can be used to train algorithms with a mean absolute error (MAE) of 0.56 D 

(95% CI: 0.55, 0.56), and R2 of 0.90 (95% CI: 0.90, 0.91) using images taken with a 

45 degree field of view as the input data. Given this somewhat surprising finding, the 

authors also went on to leverage attention maps to determine the parts of an image 

most relevant for the prediction. They found that the attention maps consistently 

highlighted the fovea as a feature that was important for the prediction (Figure 9). 

The model also frequently highlighted retinal vessels and cracks in retinal pigment. 

The model seemed to predict only the spherical component of refractive error well. 

The accuracy of the refractive error prediction seemed to decrease with a smaller 

field of view, poorer image quality, and possibly macular lesions.  

 

The ability to train accurate models without feature engineering combined with 

explanation techniques make DL an attractive tool for scientific discovery. 

Improvements in and experimentation with other explanation methods for DL models 

will help us understand these novel signals. While these heatmaps can serve as 

starting points, other techniques can be leveraged to further help explain model 

predictions -- such as selectively including or excluding parts of the images during 
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training to measure the relative importance of each of these regions to the prediction 

task. The identification of new features creates new research opportunities for better 

understanding of the development and management of disease. For researchers, 

instead of first guessing and then testing hypotheses one by one, they could use 

neural networks to directly make the prediction of interest and then utilize attention 

techniques to generate targeted hypotheses. For clinicians, this work also suggests 

that large datasets could be leveraged to fuel the development of new non-invasive 

imaging biomarkers for a variety of diseases, from ophthalmological to systemic 

diseases.  

 

4. Potential challenges for AI implementation within clinical practice 

First, AI approaches in ocular disease require a large number of images. Data 

sharing from different centers is an obvious approach to increase the number of 

input data for network training. However, Increasing the number of data elements 

does not necessarily enhance the performance of a network. For example, adding 

large amounts of data from healthy subjects will most likely not improve the 

classification of disease. Moreover, very large datasets for training may increase the 

likelihood of making spurious connections.(Gomes 2014) For use of retinal images to 

predict and classify ocular and systemic disease a clear guideline for the optimal 

number of cases for training is needed.  

 

Second, when data are to be shared between different centers regulations and state 

privacy rules need to be considered. These may differ between different countries 

and while they are aimed to ensure patients’ privacy they sometimes form barriers 

for effective research initiatives and patient’s care. Generally, there is an agreement 

that images and all other patient-related data need to be anonymized and patients’ 

consent has to be obtained before sharing is possible. This requires technical 

solutions including data storage, management, and analysis. The implementation of 

such solutions is time and cost-intensive. It requires hardware and software 

investments, expertise and is labor-intensive. Investing on data-sharing is a difficult 

decision, because the financial requirements are high and the benefit is not 

immediate. Nonetheless, all the AI research groups worldwide should continue to 

collaborate to rectify this barrier, aiming to harness the power of big data and DL to 

advance the discovery of scientific knowledge.  
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Third, the decision for data sharing can sometimes be influenced by the fear that 

competitors explore novel results first. This can even occur within an institution and 

usually it is the weaker members of a collaborative team that fear about their career 

opportunities. Indeed, key performance indicators as defined by funding bodies or 

universities including number of publications, impact factor and citation metrics may 

represent major hurdles for effective data sharing. On an institutional level the filing 

of collaboration agreements with other partners is a long and labor-intensive 

procedure that slows down analysis of shared data. Such periods may even be 

prolonged when intellectual property issues are to be negotiated. Given that these 

are usually multiple-institution agreements time spans of one year or more are 

common. This is associated with the risk that other teams are faster and that 

collaborators loose interest in the topic.  

 

Fourth, in the training set, a large number of images is required that need to be well 

phenotyped for different diseases (e.g. DR, glaucoma and AMD). The performance 

of the network will depend on the number of images, the quality of the images, and 

how representative the data are for the entire spectrum of the disease. In addition, 

the applicability in clinical practice will depend on the quality of the phenotyping 

system and the ability of the human graders to follow this system.  

 

Fifth, while the number of images that are available for diseases such as glaucoma, 

DR and AMD is sufficient to train networks, orphan diseases represent a problem 

because of the lack of cases. One approach is to create synthetic fundus images 

that mimic the disease. This is, however, a difficult task and current approaches 

have not proven to be successful(Fiorini 2016, Menti, Bonaldi et al. 2016). In addition, 

it is doubtful that competent authorities would approve an approach where data do 

not stem from real patients. Nevertheless, generation of synthetic images is an 

interesting approach that may have potential for future applications.  

 

Sixth, the capabilities of DL should not be construed as competence. What networks 

can provide is excellent performance in a well-defined task. Networks are able to 

classify DR and detect risk factors for AMD but they are not a substitute for a retina 

specialist. As such the inclusion of novel technology into DL systems is difficult, 
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because it will require again a large number of data with this novel technology. 

Inclusion of novel technology into network based classification systems is a long and 

costly effort. Given that there are many novel imaging approaches on the horizon 

including OCT-angiography or Doppler OCT(Doblhoff-Dier, Schmetterer et al. 2014, 

Leitgeb, Werkmeister et al. 2014), this may have considerable potential for diagnosis, 

classification and progression analysis, this is an important challenge for the future.  

 

Seventh, providing healthcare is logistically complex and solutions differ significantly 

between different countries. Implementing AI-based solution into such workflow is 

challenging and requires sufficient connectivity. A concerted effort from all 

stakeholders is required including regulators, insurances, hospital managers, IT 

teams, physicians, and patients. Implementation needs to be easy and 

straightforward without administrative hurdles to be accepted. Quick dissemination of 

results is an important aspect in this respect. Another step for AI being implemented 

into a clinical setting is a realistic business model that needs to consider the specific 

interest of the patient, the payer, and the provider. Main factors to be considered in 

this respect are reimbursement, efficiency, and unmet clinical need. The business 

model also needs to consider the long-term implications, because continuous 

connectivity and the capacity to learn is associated with the ability to improve clinical 

performance over time.  

 

Eighth, there is lack of ethical and legal regulations for DL algorithms. These 

concerns can occur during the data sourcing, product development and clinical 

deployment stage.(Char, Shah et al. 2018, Vayena, Blasimme et al. 2018) Char et al 

stated that the intent behind the design of DL algorithms also needs to be 

considered.(Char, Shah et al. 2018) One needs to be careful about building racial 

biases into the healthcare algorithms, especially when the healthcare deliveries 

already varies by race. Moreover, given the growing importance of quality indicators 

for public evaluations and reimbursement rates, there may be a tendency to design 

the DL algorithms that would result in better performance metrics, but not necessarily 

better clinical care for the patients. Traditionally, a physician could withhold the 

patients’ information from the medical record in order to keep it confidential. In the 

era of digital health record integrated with the deep-learning-based decision support, 
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it would be hard to withhold patients’ clinical data from the electronic system. Hence, 

the medical ethics surrounding these issues may need to evolve over time.  

 

5. Conclusions 

Given the ageing population and the ever-increasing expenditure for health care 

there is a need to innovations. Three main areas are the targets for such solutions: 

To improve the general health of a population, to lower the costs of healthcare, and 

to improve patient’s perception. AI solutions are among the most promising solutions 

to tackle these issues, and it has the potential to revolutionize how we live and 

practice medicine. It likely will change the field rapidly in the next few decades, 

although several challenges need to be resolved to increase AI adoption in 

healthcare. Many techniques have been described in attempt to unravel the ‘black 

box’ nature of DL systems, but more need to be done. Furthermore, it is also useful 

to develop more predictive algorithms to better stratify patients into different risks 

groups and treatment arms, aiming to deliver personalized medicine to the global 

population.  
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TABLES 

Table 1: Ten steps in building an artificial intelligence system for medical imaging 

analysis 

1. Identify a clinical unmet need or research question 

2. Selection of datasets - splitting of training, validation and testing  

3. Selection of CNNs (e.g. AlexNet, VGGNet, ResNet, DenseNet, Ensemble) 

4. Selection of software to build the DL systems - Keras, Tensorflow, Cafe, Python 

5. The use of transfer learning/pre-training on ImageNet  

6. The use of backpropagation for tuning and optimization  

7. Reporting of the characteristics of datasets - patients' demographics, retinal image and 

disease characteristics 

8. Reporting of the diagnostic performance on local and external validation datasets - area 

under curve, sensitivity and specificity, accuracy and kappa 

9. The use of heat map to explain the diagnosis - different types of heat map (occlusion 

test, soft attention map, integrated gradient method) 

10. Novel methods in retinal imaging - GAN, VAE and its potential clinical applications 

*GAN – generative adversarial network; VAE – variational autoencoder 
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Table 2: A summary of artificial intelligence systems using deep learning in the detection of referable diabetic retinopathy 

DL systems Year Development 
Dataset CNN 

Clinical  Mydriatic 
or 

Granularity Ground Truth 

Total n  %  Referable 
AUC 

Referable 
DR  

Referable 
DR  

Validation  Non-
Mydriatic (including ungradable   Sensitivity Specificity 

    
 
ungradable)         

Abramoff et 
al(Abramoff, 
Lou et al. 
2016) 

2016 

10,000 to 
1,250,000 
unique 
samples of 
each lesion 
type graded by 
one or more 
experts 

Algorithm is 
hybrid with 
CNN-based 
lesion 
predictors 
and 
classical 
non-deep 
learning 
algorithms 

Messidor-2 Mydriatic 

Patient-
level 

Adjudication by 3 
retinal 
specialistis until 
full consensus for 
all cases using a 
single 45 degree 
FOV image 

874 4.00% 0.98 96.80% 87.00% 

             

Gulshan et 
al(Gulshan, 
Peng et al. 
2016) 

2016 
128,175 
images graded 
3-7 times 

  

EyePACS-
1* 

Mostly 
Non-
Mydriatic Image-level 

Majority decision 
of 7 or 8 
ophthalmologists 
for all cases 
using single 
macula-centered 
image with 45 
degree FOV 

9963 11.60% 0.991 97.50% 93.40% 

        (0.974)* (96.7%)* (84%)* 

Inception-V3 
Messidor-2 Mydriatic 

Image-level 
1748 0.17% 0.94 96.10% 93.90% 

              

Gargeya and 
Leng(Gargeya 
and Leng 
2017) 

2017 

75,137 images 
from Kaggle 
competition 
graded by "a 
panel of retinal 
specialists" 
(with no 
additonal 
detail) 

  

Messidor-2 Mydriatic 

Image-level Not clearly 
described, likely 
the lesion-based 
grading that 
came with the 
public datasets 
using a single 45 
degree FOV 
image 

-- -- 0.99 -- -- 

             

             

Customized 
CNN 

E-Ophtha 
Likely 
Non-
Mydriatic 

Image-level 

-- -- 0.96 -- -- 

          
 

  

             

             

Ting et 
al(Ting, 
Cheung et al. 
2017) 

2017 

76,370 images 
from multiple 
screening 
program and 
clinical studies 
graded by a 
minimum of 2 

  SiDRP 14-
15* 

Mydriatic 

Image-level 

Two trained 
graders for all 
cases, using 45 
degree FOV a 
single image. If 
there is a 
disagreement, a 

35,948 1.10% 0.94* 90.50%* 91.60%* 

               

            
 

  

VGG-19              
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graders, often 
with a retinal 
specialist for 
arbitration 

retinal specialist 
generated final 
grade 

  
Guangdong 

Non-
mydriatic Image-level 

2 graders; 
arbitration by 1 
retinal specialist 

15,798 1.40% 0.949* 98.70%* 81.60%* 

             

  
SIMES Mydriatic 

Image-level 1 grader; 1 
retinal specialist 

3052 1.80% 0.889* 97.10%* 82%* 

             

  
SINDI Mydriatic 

Image-level 1 grader; 1 
retinal specialist 

4512 2.10% 0.917* 99.30%* 73.30%* 

             

  
SCES Mydriatic 

Image-level 1 grader; 1 
retinal specialist 

1936 1.00% 0.919* 100%* 76.30%* 

             

  
BES Mydriatic 

Image-level 2 
ophthalmologists 

1052 0.40% 0.929* 94.40%* 88.50%* 

             

  
AFEDS Mydriatic 

Image-level 2 retinal 
specialists 

1968 4.20% 0.98* 98.80%* 86.50%* 

             

  
RVEEH Mydriatic 

Image-level 2 graders 
2302 10.90% 0.983* 98.90%* 92.20%* 

             

  
Mexican Mydriatic 

Image-level 2 retinal 
specialists 

1172 0.50% 0.95* 91.80%* 84.80%* 

             

  
CUHK Mydriatic 

Image-level 2 retinal 
specialists 

1254 0.00% 0.948* 99.30%* 83.10%* 

             

  
HKU Mydriatic 

Image-level 2 optometrists 
7706 0.00% 0.964* 100%* 81.30%* 

              

Krause et 
al(Krause, 
Gulshan et al. 
2018) 

2018 

1.67M images 
with clinical 
grades for train 
set 3,737 fully 
adjudicated 
images for 
tune set 

Inception-V3 

EyePACS-
2* 

Mostly 
Non-
Mydriatic 

Image-level 

Adjudication by 3 
retinal 
specialistis until 
full consensus for 
all cases using a 
single 45 degree 
FOV image 

-- 0% 0.986 97.1% 92.3% 

           

           

            

Abramoff et 
al(Abramoff, 2018 

10,000 to 
1,250,000 

Customized 
CNN 

FDA Pivotal 
Trial 

23.6% 
Mydriatic 

Patient-
level  

Reading center 
grading of 892 8.20% - 87.2% 90.7% 
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Lavin et al. 
2018) 

unique 
samples of 
each lesion 
type graded by 
one or more 
experts 

  

stereoscopic, 4W 
field equivalent of 
ETDRS, with 
OCT for DME  

      80.70%* 89.80%* 

           

Li et al(Li, 
Keel et al. 

2018) 
2018 

58,790  
images from 
ZhongShan 
Ophthalmic 
Eye Center 

Inception-v3 

ZhongShan  
Mostly 
Non-
Mydriatic 

Image-level 

Panel of 21 
ophthalmologists, 
reference 
standard was 
made when 
consistent 
grading 
outcomes 
achieved by 3 
graders.  VTDR 
= ≥severe DR 
and/or  DME 

8,000 6.10% 0.989 97% 91.4% 

NIEHS 
Mostly 
Non-
Mydriatic 

  2 
ophthalmologists 7,181 

1.9%** 0.955** 92.5%** 98.5%** 

SIMES Mydriatic   1 grader; 1 
retinal specialist 

15,679 

AusDiab Mydriatic   12,341 

 
*The results included the ungradable images (and the performance is often lower compared to those who excluded the ungradable images from the analysis) 

**Combined performance for 3 external validation studies, the individual diagnostic performance was not reported in the study  
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Table 3: A summary of artificial intelligence system using deep learning for detection of glaucoma suspect and glaucoma  

 

Author Year Disease  
definition 

Development 
Dataset CNN Clincial 

Validation 

Mydriatic 
or  
non-myd 

Granularity Ground Truth Imaging 
Modality 

Number 
of  
images 

AUC  Sensitivity  Specificity  

Li et al.(Li, He et 
al. 2018) 

2018 
CDR0.7 and 
glaucomatous 
changes 

31,745 images  
(LabelMe) 

Inception-
V3 

8,000 
images  
(LabelMe) 

-- Image-level 

Panel of 21 
ophthalmologists, 
reference 
standard was 
made when 
consistent grading 
outcomes 
achieved by 3 
graders 

Fundus 
photos 

48,116 0.986 95.60% 92.00% 

Ting et al.(Ting, 
Cheung et al. 
2017) 

2017 
CDR0.8 and 
glaucomatous 
changes 

125,189 images  
(SiDRP 10-13, 
SIMES, SCES, 
SINDI and 
SNEC 
Glaucoma 
datasets) 

VGG-19 

71,896 
images  
(SiDRP 14-
15) 

Mydriatic Image-level 
1 retinal 
specialist; 2 
senior graders 

Fundus 
photos 197,085 0.942 96.40% 87.20% 

Shibata et 
al(Shibata, 
Tanito et al. 
2018) 

2018 Glaucoma 
3,150 eyes  
(Matsue Red 
Cross Hospital) 

ResNet 

110 eyes  
(Matsue 
Red Cross 
Hospital) 

Non-
mydriatic Eye-level 

3 resident 
ophthalmologists 

Fundus 
photos 3,260 0.965 NR NR 

Asaoka et al.75 2018 Early 
glaucoma 

1936 eyes  
(Pretraining: 
JAMIGO; 
Training: Tokyo 
University 
Hospital, Tajimi 
Iwase eye 
clinic) 

Customized 
CNN 

196 eyes 
(Tokyo 
University 
Hospital, 
Kitasato 
University 
Hospital, 
Tajimi 
Iwase eye 
clinic) 

Mydriatic Eye-level 

Panel of 3 
glaucoma 
specialists; 
glaucomatous VF 
change defined 
by Anderson 
Patella Criteria 

SD OCT 2,132 0.937 82.50% 93.90% 
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Masumoto et 
al.76 

2018 Glaucoma 
1,117 images 
(Tsukazaki 
Hospital) 

Customized 
CNN 

282 images 
(Tsukazaki 
Hospital) 

Non-
mydriatic 

Image-level 2 glaucoma 
specialists 

Optos 
wide-field 
fundus 
photos 

1,399 0.872* 81.3%* 80.2%* 

Li et al.80 2018 Glaucoma 

3,712 images 
(3 ophthalmic 
centers in 
China) 

VGG-15 300 images -- Image-level 

9 opthalmologists 
(3 glaucoma 
experts, 3 
attending 
ophthalmologists, 
3 resident 
opthalmologists) 

HVF PD 
probability 
plots 

4,012 0.966 93.20% 82.60% 

 
Abbreviations used: CDR=cup-disc ratio; AUC=Area under the receiver operator curve; SD OCT= Spectral domain ocular coherence tomography; HVF PD = 
Humphrey visual field pattern deviation. For definition of glaucoma see source references. Some form of convoluted neural network was used in all of these 
deep learning algorithms. 
*This represents glaucoma overall averaged over mild, moderate and severe cases. 
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Table 4: A summary of artificial intelligence system using deep learning for detection of age-related macular degeneration (AMD)  

Author Year Disease Development 
Dataset  CNN Clincial 

Validation 

Mydriatic 
or non-
mydriatic 

Granularity Ground Truth 
Number of 
retinal 
images 

AUC  Sensitivity  Specificity  Remark 

Burlina et 
al(Burlina, 
Joshi et al. 
2017) 

2017 Referable 
AMD 

107057 images 
(AREDS 1) 

AlexNet DCNN/ 
OverFeat 
DCNN 

26764 
images  
(AREDS 
2) 

Mydriatic Image-Level 

AREDS 
photograph 
reading center 
(trained and 
certified 
graders) 

133,821 0.94-0.96 71.00-
88.40% 

91.40-
94.10% 

0.764-
0.829 
(Kappa) 

Burlina et 
al(Burlina, 
Joshi et al. 
2018) 

2018 

5-year risk 
of AMD 
Progression 
to Advanced 
Stage 

59313 images 
(AREDS 1) 

ResNet-50 

8088 
images 
(AREDS 
2) 

Mydriatic Image-Level 

AREDS 
photograph 
reading center 
(trained and 
certified 
graders) 

67,401 - - - 

Overall 
mean 
estimation 
error = 
3.5% to 
5.3% 

Ting et 
al(Ting, 
Cheung et al. 
2017) 

2017 Referable 
AMD 

38185 images 
(SIDRP 10-13)  

VGG-19 
71896 
(SiDRP 
14-15)  

Mydriatic Image-Level 1 Retinal 
Specialist 

108,558 0.931 93.20% 88.70%   

  
 

2180 images  
(SNEC AMD 
Phenotype 
Study)  

 
  

 
  

 
  

 
  

 
  

   
16182 images  
(SCES)                

  
 

8616 images  
(SMES)  

  
 

  
 

  
 

  
 

  

    7447 images  
(SINDI) 

                    

Grassmann et 
al(Grassmann, 
Mengelkamp 
et al. 2018) 

2018 Any AMD 
86,770 images  
(AREDS 1) 

7 CNN 
(AlexNet; 
GoogLeNet; 
VGG; 
Inception-v3; 
ResNet; 
Inception-
ResNet-v2; 
Ensemble: 
random forest) 

33886 
images  
(AREDS 
2)  

Non-
Mydriatic Image-Level 

AREDS 
photograph 
reading center 
(trained and 
certified 
graders) 

120,656 - 

100% 
(Late 
Stage 
AMD) 

96.5% 
(Late Stage 
AMD) 

  

          
5555 
images  
(Kora) 
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Table 5: A summary of artificial intelligence system using deep learning for optical coherence tomography for age-related macular 

degenerations (AMD)  

DL systems Year Disease OCT 
machines 

Development 
Dataset CNN Test Images AUC Accuracy Sensitivity Specificity 

Disease 
Detection                     

Lee et al(Lee, 
Baughman et al. 
2017) 

2017 
Exudative 
AMD Spectralis 80,839 images VGG-16 20613 images 0.928 87.60% 84.60% 91.50% 

Treder et 
al(Treder, 
Lauermann et al. 
2018) 

2018 
Exudative 
AMD Spectralis 

1,012 images  
(University of 
Muenster 
Medical 
Center) 

Inception-
V3 100 images NR 100% 92% 96% 

Kermany et 
al(Kermany, 
Goldbaum et al. 
2018) 

2018 CNV Spectralis 108,312 
images 

Inception-
V3 1,000 images        

  DME              

  Drusen              

  
1. Multi-class 
comparison       0.999 96.60% 97.80% 97.40% 

  2. Limited 
model       0.988 93.40% 96.60% 94.00% 

  
3. Binary 
model               

  CNV vs 
normal       1 100% 100% 100% 

  
DME vs 
normal       0.999 98.20% 96.80% 99.60% 

  Drusen vs 
normal       0.999 99.00% 98.00% 99.20% 

De Fauw et 
al(De Fauw, 
Ledsam et al. 
2018) 

2018 

Urgent, semi-
urgent, 
routine, and 
observation 
only 

Topcon  
(device 1) 

877 manually 
segmented 
scans Segmentati

on network 
U-Net 

997 scans 
0.992  
(Urgent 
referral) 

94.50%     

Spectralis  
(retrained 
device 2) 

152 manually 
segmented 
scans 

116 scans 
0.999  
(Urgent 
referral) 

96.60%     
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Normal, CNV, 
Macular 
Edema, 
FTMH, PTMH, 
CSR, VMT, 
GA, Drusen, 
ERM 

Topcon  
(device 1) 

14,884 scans  

Classificatio
n network 
using a 
custom 29 
CNN layers 
with 5 
pooling 
layers  

 
  

 
    

                

Disease 
Prediction                     

Ursula 
Schmidth(Schmi
dt-Erfurth, 
Waldstein et al. 
2018) 

2018 AMD Spectralis HARBOR Trial 
Other - 
Random 
Forest 

614 patients - 

Predictive 
Accuracy of 
BCVA 
R2=0.7 

- - 
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FIGURES 

Figure 1: The introduction of artificial intelligence (AI) in 1950’s, followed by machine learning in 1980’s and deep learning (DL) in 
2010’s. Machine learning is a subset of AI, involving using statistical techniques to help computers to learn without being explicitly 
programmed. With the advent of graphic processing unit with much improved processing power, DL is the state-of-art technique 
that has revolutionized the machine learning field over the past few years. It has now been widely adopted in image recognition, 
speech recognition and natural language processing domains.  
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Figure 2A: The input, feature-extraction layers (hidden layer) and classification (output) layers of a convolutional neural network 
(CNN). The feature extraction layers consist of convolution layer, Rectified Linear Unit (ReLU) layer and Pooling. Figure 2B: For 
max pooling, the largest number within a 2x2 rectified feature map will be chosen to be the representative number on the feature 
map (output).  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2A: The general architecture of a CNN Figure 2B: Max pooling 
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Figure 3: The workflow of a deep learning system in detecting referable diabetic retinopathy and age-related macular degeneration, 

further demonstrated by the heat map 
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Figure 4: Deep learning system for detection of glaucomatous optic disc using optic disc imaging
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Figure 5: The application of deep learning to the segmentation of retinal optical 
coherence tomography (OCT) images – the prototype OCT viewer for the 
Moorfields-DeepMind deep learning system. In this case, the system correctly 
segments loss of the retinal pigment epithelium (RPE) highlighting an area of 
geographic atrophy (GA) in age-related macular degeneration (AMD). The GA is 
surrounded by numerous foci of drusenoid pigment epithelium detachment (PED). 
The partially detached posterior hyaloid is also clearly delineated.  
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Figure 6: The application of deep learning to the segmentation of retinal optical 
coherence tomography (OCT) images – the prototype OCT viewer for the 
Moorfields-DeepMind deep learning system. In this challenging case of retinal 
angiomatous proliferation (RAP), the system correctly segments an area of 
intraretinal fluid (IRF) overlying an area of subretinal hyperreflective material (SHRM). 
It classifies the presence of both macular retinal edema and choroidal 
neovascularization, but recommends urgent referral to an ophthalmologist. Through 
the creation of an intermediate tissue representation (seen here as 2D thickness 
maps for each morphologic parameter), the system provides “interpretability” for the 
ophthalmologist. 
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Figure 7: Continuous spectrum of retinal vascular findings in retinopathy of prematurity (ROP). (A) shows normal posterior retinal 

vessels. (B) shows pre-plus disease with mild retinal vascular dilation and tortuosity. (C) shows plus disease with significant retinal 

vascular dilation and tortuosity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6A  Figure 6C  Figure 6B  
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Figure 8: Attention maps for a single retinal fundus image. The left-most image is a sample retinal image in color from the UK 
Biobank dataset. The remaining images show the same retinal image, but in black and white. The soft attention heat map for each 
prediction is overlaid in green, indicating the areas of the heat map that the neural-network model is using to make that particular 
prediction for the image. 

Original Age Smoking Status Systolic BP 

    

 Actual: 53.0 years 

Predicted: 53.8 years 

Actual: Nonsmoker 

Predicted: Nonsmoker 

Actual: 128.5 mmHg 

Predicted: 130.1 mmHg 
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Figure 9. Mean attention map over 1000 images from UK Biobank for severely 

myopic (SE worse than -6.0), neutral (SE between -0.5 and 0.5), and severely 

hyperopic (SE worse than 5.0) eyes conditioned on eye position. Scale bar on 

right denotes attention pixel values, which are between 0 and 1 (exclusive), with 

the sum of all values equal to be one.
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